Live Sound

Supported By

Efficiency Vs Consumption: More Output From Less Power

While power ratings are convenient, it still comes down to voltage across a load -- not power...

The Power Test
The only reason to “power test” a loudspeaker is to determine its thermal limits. Many methods exist for determining the maximum input power. All of them have merits, and all have similar attributes.

A meaningful power test must include:

• 1. A broadband noise stimulus that is band-limited for the device-under-test.

• 2. A method of determining the power transfer between the amplifier and the device-under-test.

• 3. A time metric that describes how long the loudspeaker can dissipate the applied power.

• 4. And (ideally) a measurement of SPL from the loudspeaker.

Figure 3 shows a useful way of plotting the results of the test. The noise stimulus for a power test is usually pink noise (equal energy per 1/n-octaves).

Some methods use flat pink noise (as viewed on a 1/N-octave analyzer) and others apply a weighting filter to simulate the spectral content of music.

Figure 3 (click to enlarge)

The latter type can produce higher power ratings into full-range devices since more of the electrical energy is shifted toward the lower frequency bands where a transducer can usually dissipate more heat due to its heavier construction.

To determine power transfer both the voltage and the current applied to the device-under-test must be monitored. It is not sufficient to calculate the power transfer from the applied RMS voltage and the nominal impedance of the load.

The reason is that the load impedance will increase when the device-under-test heats up, reducing the power drawn by the load (power compression). The power drawn then ceases to track the applied voltage and the SPL may not increase as the drive voltage is increased.

Monitoring voltage and current will yield much more conservative power ratings than are often claimed by promotional materials. The loudspeaker’s impedance should also be monitored during a power test for increases due to heat. If it increases by more than 10 percent the loudspeaker is getting into trouble and the applied voltage should be reduced.

Read More
Church Sound: Top Eight Tools For The Live Audio Toolbox