Study Hall
Sponsored by
Audio Technica

Properly Setting Sound System Gain Structure

Analyzing each device in relation to the others -- and in relation to the entire signal path...

By Chuck McGregor May 21, 2019

Image courtesy of Alexander Stein

The chart, as seen in Figure 2, was changed from Figure 1 by moving all the device windows (except the amplifier) down by 12 dB using the relative dB scale on the left. A +15 dB signal (the notch filter clip level) is now attenuated to +3 dB by the amplifier’s input attenuator.

The noise floor line is redrawn through the highest window sill (in this case still the mixer). Because this ends up 12 dB lower than in Figure 2 relative to the system clip level, we see that the system’s overall window height is now 84 dB. This is a 12 dB improvement – much better.

Note that the absolute device clip levels no longer relate to the absolute dB scale except for the amplifier’s input after its input attenuator. Our usable signal range (from 30 dB above the noise floor) is 54 dB. This means our system is now able to squeak out enough range to reproduce the dynamic range of instrumental and vocal sources.

Unfortunately, the mixer is still the primary noise source by 3 dB over the signal delay. However, according to their published specifications, the mixer should have some 6 dB better noise performance than the signal delay.

It should also be obvious the signal delay is the weakest dynamic range link because it has the shortest window. Therefore, we must conclude that there is more that can be done to optimize the system’s gain structure.

You Can Make It Better

To optimize the system, pads or gain must be added at the input of each device so that its clipping level and the clipping level of the preceding device occur at the same point. Think of the following procedure as a graphic picture of what would happen to the signal on a volt meter as you work your way through the system.

To create the chart shown in Figure 3, the windows are shifted up and down as needed so that all the tops are lined up on the system clip level line. To do this, start with Figure 1 and work from left to right in signal flow fashion. If you move a window up you need gain between it and the next device. If you move a window down you need a pad.

First, move the mixer window down so its top is even with the graphic EQ window. This movement is measured on the relative dB scale, which in this case is -6 dB. Therefore, you need a 6 dB pad at the input of the graphic EQ.

Next, move BOTH the mixer and graphic EQ windows down together so the graphic EQ window is even with the top of the notch filter window. This also turns out to be -6 dB. Therefore, a 6 dB pad is needed between the EQ and notch filter.

Now, move the mixer, graphic EQ and notch filter windows together so the top of the notch filter window is even with the top of the signal delay window. To do this, move ALL the previous devices up 3 dB. This means you need 3 dB of gain between the notch filter and signal delay.

Repeat the process again by moving the windows of the first four devices together so the top of the signal delay window is even with the limiter window. This distance equals 3 dB. This means 3 dB of gain is needed between the signal delay and limiter.

Lastly, you must lower ALL device windows to line up with the input to the amplifier. They are moved the distance between the top of the limiter and the top of the amplifier. In this example the distance is 18 dB. (In the actual system this would usually be done with the amplifier input attenuator.)

After completing all these steps, the tops of the windows end up on the system’s clip level line as shown in Figure 3 (+3 dB on the absolute dB scale). Looking back from inside the amplifier after its input attenuator, all devices appear as though they are clipping at +3 dB. In reality, they are all clipping at their specified device clip levels. If one device is clipping—everything is clipping.


Read the rest of this post

1
2
3
4
5
6
7
8
9

Comments

Have something to say about this PSW content? Leave a comment!

Scroll past the ”Post Comment” button below to view any existing comments. Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Tagged with:

Subscribe to Live Sound International

Subscribe to Live Sound International magazine. Stay up-to-date, get the latest pro audio news, products and resources each month with Live Sound.