The Scientific Essence Of Sound: Getting To The Basis Of Everything We Hear
No one becomes a scientific guru of sound overnight. However, your time will be well invested, because this information is truly at the heart of everything you do when working with sound.

This value is referred to as the reference acoustic pressure. We will see in a later installment that this is equivalent to 0 dB sound pressure level (SPL).

The amplitude, and therefore the SPL, of a sound wave is directly proportional to the acoustic pressure.

Propagation Medium Density. The density of a material is the mass per unit volume, expressed in units of kg/m3.

For air at normal atmospheric conditions, the characteristic density (ρo) is 1.2 kg/m3.

When the pressure in the propagating medium changes there will be a corresponding density change in the medium. Pressure maxima result in a density increase while pressure minima result in a density decrease.

Because air is a compressible fluid, there will be localized density changes as the acoustic energy flows through the air.

Figure 2 shows conceptually what is happening for a longitudinal sound wave in terms of the particle displacement and propagation medium density change.

Figure 2. Conceptualization of sinusoidal longitudinal wave motion. (Courtesy Houghton)

Particle Velocity. The particle velocity (u) is the velocity fluctuation a particle undergoes in the acoustic medium about its equilibrium position resulting from the passage of acoustic pressure. The units are m/s. Note that the particle velocity should not be confused with the characteristic propagation velocity of sound, 343 millieseconds (ms), which describes the rate at which sound travels through the medium.

One important characteristic of the particle velocity is that it is 90 degrees out-of-phase with the acoustic pressure when close to a physical boundary or the radiating surface. This characteristic is of prime importance when designing sound absorptive treatments such as “bass” traps.  We will examine sound absorption in a future article.

The amplitude of the particle velocity is directly proportional to the acoustic pressure. Acoustic pressure and particle velocity are related to each other by the following equation:

Equation 1
where,
p = acoustic pressure, Pa
ρo = air density, 1.2 kg/m3
c = velocity of sound, 343 ms
u = particle velocity, ms

The constant term in Equation 1, ρoc, is referred to as the characteristic impedance of the acoustic medium. It is of prime importance in helping us understand the interaction of a vibrating surface, such as a loudspeaker cone, and the surrounding acoustic field that provides a “back pressure” on the radiating surface. This radiation phenomenon will be examined in a future article.

Viewed 8445 times.

Topics:
Comment (1)
Posted by LeeT  on  03/14/11  at  04:54 PM
Wow you guys really know your stuff to the core. Very impressive.
Commenting is not available in this weblog entry.

Product Showcase