Strategies In Optimizing A Live Club System
Ways to can work around room and system shortcomings to deliver high-caliber sound reinforcement

March 21, 2014, by Tim Weaver

live sound

McGonigels Mucky Duck is one of those venues that bands, engineers and fans love. An Irish-style pub in downtown Houston, it’s stage is noted in the folk, jazz, Americana and World Music spheres and has played host to the likes of Joe Ely, Shake Russell, Radney Foster, Kinky Friedman, James McMurtry, Druha Trava, Sarah Jarosz, The Magpies, Iris Dement, Michelle Shocked, Leon Redbone, and hundreds of others.

The official capacity is 140, which in my opinion, would be very packed and uncomfortable. They sell out the 100 or so table seats very fast for most shows, and the remaining tickets are for standing room only. As the website eloquently puts it, “If another chair would fit it would already be there. Sorry, but you can’t bring your own chair.”

The crowd is respectful. To help those who may be visiting for the first time, there are placards on each table reminding people to be quiet, and to silence cell phones. This is one of the best things about the Mucky Duck. They respect the artists. It’s the very definition of a listening room.

The place is not without drawbacks though, and here, I’ll outline some of those shortcomings and discuss ways that visiting engineers can work around them in order to deliver high-caliber sound reinforcement.

Dialed In
Saying the stage is small is being somewhat generous – I’ve seen bigger drum risers. It’s located in a corner, which is both a blessing, in the form of a little extra real estate, and a curse, because the drums will always be too loud.

A view of the room from house left.

Heavy theatrical drapery around the perimeter of the stage helps quiet reflected stage wash but does little to dampen the natural volume of the drums. The low ceiling doesn’t help either.

There is no house engineer, and management knows precious little except how to get the background music on. Bands are expected to bring their own mix engineer, and that person is usually the sound tech as well. The job is either easy or difficult, depending on the condition the previous engineer/tech left it in.

Luckily the level of talent booked here means that the system is usually zeroed out, and the stands and cables are neatly put away. Almost everyone leaves it a little better than they found it, which is also my philosophy – I don’t want the next guy to work any harder than he has to.

Quiet, please.

Both house and monitor systems use EAW loudspeakers, with four SM159z wedges on four separate mixes derived from front of house. Each mix has a 15-band EQ inline. With only 15 bands on the monitor sends, precise feedback taming will not happen. I bring a few XLR “wyes” in order to split the important inputs into two separate channels.

Using different channel strips – one EQ’d for the mains and one for monitors – allows much finer control over the house mix versus the monitor mix.

Main loudspeakers are FR159z, one each hung on the wall stage left and stage right, and two more toward the rear of the room providing fill. There are no subwoofers. And, there’s also no time-alignment on the front or rear loudspeakers, and no processor available to do so.

I solve this problem by bringing in a QSC DSP-4 digital processor, which I insert and use to set a 9-millisecond delay on the front loudspeakers.

When using a house system to supplement the stage volume, instead of overpowering it, delaying the mains to arrive in time with the band is the way to go, at least in my view. It helps the PA “disappear” and leaves the impression that the band is making all the noise.

I also set a 21-millisecond delay on the rear loudspeakers. With each of them a different distance from the front, I choose a delay time that splits the difference.

The downside of this is minimal because the improvement is quite dramatic, a huge benefit, and no one notices that the rear fills arrive a few milliseconds apart.

The 2-input by 2-output DSP-4 works out great – there aren’t all that many compact DSP units that can be controlled with a laptop available at a reasonable price point on the used gear market. I also like that it’s small enough to fit in my briefcase and uses standard XLR inputs and outputs. (In fact, I like it so much that I own two.)

Stage Details
A recent trip to the Mucky Duck was to support a performance by Max Stalling, a native Texan with a unique musical style that rolls from two-stepping dance numbers to Spanish-guitar-heavy folk music (à la Marty Robbins), with a few waltzes mixed in.

A QSC DSP-4 buried is handy for augmenting the capabilities of the system, and it can be addressed with Signal Manager software, shown here in “Mucky Duck configuration.”

Max sings and plays the acoustic guitar, and is backed by a three-piece rhythm section comprised of Jason Steinsultz on upright bass, Jeff Howe on drums, and Bryce Clark on lead guitar, switching between mandolin, steel string and gut string acoustics, and electric guitar. Both Jason and Bryce sing harmony, and steel guitar player Hank

Early also sat in for this show, I used the band’s own Shure Beta 58s microphones for vocals, a house-supplied AKG D112 on kick, and Shure SM57s on electric guitar and steel. The upright bass and three acoustics all had band-supplied Radial Tonebone preamps and ran direct.

Just one of my AKG 451e condensers was used for drum overhead, to capture the kit as a whole. Jeff (the drummer) switches between sticks, brushes and even sometimes wrapped mallets. I will heavily compress the overhead (remember, the acoustic drum sound is still dominant in the room) so that the details on the brushes and mallets are not lost. Having at least one drum mic also lets me add reverb to this very dry room.

Max is very particular about his monitor mix. Some engineers take this as being a “prima donna” but I’ve found it to be exactly the opposite. He knows what he wants and isn’t afraid to ask. He can’t state specific frequencies, so there’s a bit of interpretation needed to get his mix the way he wants it, but once he’s comfortable, that’s pretty much that.

The tone that Max wants out from his monitor is not exactly what you want at front of house. He likes things a little dark with plenty of low mids for both his vocal and guitar. Two of the XLR wyes allowed me to split his vocal and acoustic channels so that I was able to give him exactly the tone he wanted in the monitor by using the channel strip EQ. Then I had use of the 15-band graphic for his mix to tame the little bit of feedback that tried to creep in.

Starting Quiet
After getting the monitors set, I build the front of house mix. The best way to mix in this room is to listen to what’s coming off the stage and only add what’s needed. Trying to overpower the stage volume is a losing battle.

I always start my sound check with the house PA off and just listen to what’s happening on stage, and then work to fill in the missing bits that will help make the performance “pop.” I’ve noted several times that it seems like I’m cutting too much low-mid out of the house, but that’s usually O.K. because the monitors provide all of the low-mid energy one could ever want.

I get the vocals up to a good level, over the stage volume, and only after do I work in the other instruments. Generally the drums and amplified instruments are fine coming straight off the stage. On the recent gig with Max, I needed a touch of the electric guitar and steel, but none of the bass and kick drum.

Jeff plays a kit of Slingerland Radio Kings from the 1940s. These drums are big and loud. The kick is a huge 14 inches by 26 inches and uses a ported head. (Back in the “good old days” the drums had to fend for themselves, and this set gives you all the stage volume you need!)

But here, because were already plenty loud in the house, I used the overhead high-passed around 100 Hz and compressed at a 6 to 1 ratio with about 12 to 15 dB of reduction on the loud parts to add definition and to help keep the mix cohesive all the way to the back of the room. It was also used to feed the reverb.

The Allen & Heath GL2400 that does house and monitor duties, along with a rack of all house and monitor system processors.

Same Room
The house console is a 24-channel Allen & Heath GL2400, a step above what you find in many clubs the size of the Mucky Duck. Most bands will not fully mic the drums, so 24 channels gives me plenty of room to split channels as needed.

I maximize the two available channels of compression on the venue’s dbx 1066 by inserting each on a bus and assigning several like channels to that bus. I used one compressed bus for the drums and another for the lead acoustic and a gut string acoustic that are featured prominently in the band.

There are also two Lexicon effects units – MPX110 and MX400 – on hand to add ambiance. To create a sense of space in this dry, tightly packed room, I used a trick that I’ve implemented in most of my live mixes for the past couple of years. I select a very short and transparent “room” style reverb and send the entire band to it, typically applying about a half second of decay and zero pre delay.

Then, I bring it up in the house until it can be heard clearly, then back it down to just on the edge of being noticed. If the reverb is muted, a change can be heard, but it’s not something you can pinpoint. I find that this really takes a tight mix and glues it together even more – the band is all playing in the same “room” together because they all have the same decay time.

If you’re lucky enough to have a gig in the Mucky Duck, be prepared to bring your A game. It’s a bit challenging, but once the mix is dialed in you can be sure you’re mixing for a crowd that truly appreciates what you’re doing.

Tim Weaver is the owner of Weaver Imaging, an audio, lighting, and projection provider based in College Station, TX. He has been a professional sound engineer for 18 years, working across all genres.

Return to articleReturn to article
Strategies In Optimizing A Live Club System