Sign up for ProSoundWeb newsletters
Subscribe today!

Location, Location: The Effect Of Mic Placement On Instrument Tonal Quality
+- Print Email Share RSS RSS

Useful Measurements
Mic’ing an instrument can have a dramatic impact on its tone quality as heard through a sound reinforcement system (or studio monitors for that matter). There can be a bassy or honky tone that mars the signature.

Moving the mic changes the sound. A musical instrument radiates a different tone quality (spectrum) in each direction. Also, each part of the instrument produces a different tone quality.

It pays to experiment with all sorts of mic positions until you find a sound you like. There is no one right way. You also place them to minimize feedback, and those two requirements often conflict with each other.

To determine some useful mic locations on an acoustic guitar, I ran extensive measurements of the spectrum of an acoustic guitar as picked up in various mic locations.

The spectrum of a musical instrument is its output level versus frequency – its fundamental frequencies and harmonics, and their relative levels.

To establish a natural-sounding reference, I recorded an acoustic guitar with a lab-reference omnidirectional mic one foot away (ACO Pacific 7062PH). This mic has a ruler-flat frequency response. At the same time, I recorded with a flat-response mini omni mic on the guitar. I placed the mini mic in various locations, and measured the guitar’s spectrum (fundamental and harmonic frequencies).

Finally, I compared the reference spectrum at 1 foot to that of the mini mic on the instrument.

The results show the differences in bass, midrange and treble between the reference mic one foot away and the mini mic on the guitar. They describe the timbre or tone quality picked up in various mic placements. I also ran listening tests with 10 trained listeners and musicians. They described how each mic placement sounded compared to the reference.

The results shown here are for one guitar. And because every guitar is different, these measurements are meant to indicate general trends only.

Figure 1: Above, the reference mic spectrum and the close-mic’d spectrum. Below, the difference between the two curves. (click to enlarge)

In Figure 1, the mic is near the low E string, halfway between the sound hole and the bridge. Its spectrum is a fairly good match to the reference, so its sound is natural.

In the top graph, I overlaid the reference mic spectrum and the close-mic’d spectrum on the same graph, so you can see in how mic placement affects the spectrum, which affects the timbre you hear. The red curve is the flat-response reference mic one foot out front, and the yellow curve is the mini mic. Each horizontal line is + or - 10 dB relative to the adjacent line.

The lower graph in Figure 1 shows the difference between the two curves, or the difference between the reference spectrum and the close-mic’ed spectrum, for the same placement. The differences between the two are slight, so the close-mic’d sound in that position is natural or hi-fi.

All of the following graphs (Figures 2-6, below) show the difference between the reference spectrum and the close-mic’d spectrum. In other words, the graphs show how the sound changes when you move the mic from one foot out front on to the instrument’s surface, in various locations.

A note about Figure 6 – to get the acoustic guitar to sound natural when mic’d in that location, apply a complementary EQ curve: roll off the lows (about -10 dB at 100 Hz) and dip the upper midrange (about -6 dB at 6 kHz.). Or use a mini mic with that frequency response.

Again, every instrument is different, so these measurements are meant to show general trends.

Figure 2: The mic is on the guitar body halfway between the bridge and the edge of the guitar. The sound is midrangey –thin or weak in the bass, and diminished in the treble, as shown by the reduced output below 300 Hz and above 1 kHz.
Figure 3: The mic is one inch inside the soundhole, about a half-inch below the strings. The sound is bassy because the low frequencies below 200 Hz are emphasized in the sound hole. Also, the mids and highs are reduced, giving a slightly dull or dark sound.
Figure 4: The mic was moved next to bottom edge of sound hole. The sound is bassy due to the emphasis below 200 Hz. Also, it is lacking in presence due to the weaker output around 1 kHz and 4 kHz.
Figure 5: The mic is under strings between sound hole and bridge. Sounds fairly similar to reference but with reduced mids and highs.
Figure 6: The mic is just inside the sound hole, mic touching the underside of the front surface, at 8 o’clock relative to the fingerboard. The sound emphasizes the bass below 200 Hz and emphasizes the treble above 4 kHz. The guitar picked up here is relatively loud, so the gain-before-feedback is good..

Bruce Bartlett is a microphone engineer (, recording engineer, live sound engineer, and audio journalist. His latest book is “Practical Recording Techniques 6th Edition.”

Source: Live Sound International

Discover the art of sound through insightful and in-depth coverage of the people, technologies and ideas that are transforming the professional live audio world.
Subscribe today!

With Live Sound, You Can Make Anyone Sound Good

A free subscription to Live Sound International is your key to successful sound management on any scale — from a single microphone to a stadium concert. Written by professionals for professionals, each issue delivers essential information on the latest products specs, technologies, practices and theory.
Whether you’re a house monitor engineer, technical director, system technician, sound company owner, installer or consultant, Live Sound International is the best source to keep you tuned in to the latest pro audio world. Subscribe today…it’s FREE!!

Commenting is not available in this weblog entry.

Audio Central